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Abstract
In marrying with Unmanned Aerial Vehicles (UAVs), the person re-identification (re-ID) techniques are further strengthened
in terms of mobility. However, the simple hybridization brings unavoidable scale diversity and occlusions caused by the
altitude and attitude variations during the flight of UAVs. To harmoniously blend the two techniques, in this research, we
argue that the pedestrian should be globally perceived regardless of the scale variation, and the internal occlusions should
also be well suppressed. For this purpose, we propose a novel Multi-granularity Attention in Attention (MGAiA) network
to satisfy the raised demands for the aerial-based re-ID. Specifically, a novel multi-granularity attention (MGA) module is
designed to supply the feature extraction model with a global awareness to explore the discriminative knowledge within scale
variations. Subsequently, an Attention in Attention (AiA) mechanism is proposed to generate attention scores for measuring
the importance of the different granularity, thereby proactively reducing the negative efforts caused by occlusions. We carry
out comprehensive experiments on two large-scale UAV-based datasets including PRAI-1581 and P-DESTRE, as well as the
transfer learning from three popular ground-based re-ID datasets CUHK03, Market-1501, and CUHK-SYSU to quantify the
effectiveness of the proposed method.

Keywords Person re-identification · Aerial images · Multi-granularity · Attention mechanism

1 Introduction

Person re-identification (re-ID) aims to identify the target
pedestrian across a set of images within the non-overlapping
camera views scenarios [1–3]. This technique significantly
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facilitates cross-camera tracking used in video surveillance
for public security and safety.

Taking the advantage of the deep learning approaches
[4–6], recent studies on person re-ID have achieved remark-
able progress on publicly available datasets where images
or videos were collected by static cameras. However, such
static cameras lack mobility and require a quantity of time
to set up as well as connect to the existing surveillance sys-
tem. Following the raised issues, the rapid development of
Unmanned Aerial Vehicles (UAVs) makes them desirable
for creating an intelligent surveillance system in terms of
flexibility and cost. The kernel technique is to explore the
aerial-based person re-identification by using the UAV cap-
tured images. However, the scarcity of datasets for UAV
images constrains the development of aerial-based re-ID. It
is underdeveloped in comparison with other computer vision
tasks, i.e., object detection [7, 8], and tracking [9]. Until
recently, two large-scale aerial-based datasets PRAI-1581
[10] and P-DESTRE [11] were released, which enabled the
conduct of deep learning-based re-ID algorithms for address-
ing the challenges in aerial-based re-ID tasks.
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Previous deep model-enforced approaches [12–14] sig-
nificantly enhanced the performances of UAV-based person
re-ID via exploring the discriminative feature representa-
tions. However, in this research, we make a deep insight into
the rationale of the specificity of the existing issues in UAV-
based person re-ID for better model designing and functional
regularization. In Fig. 1, we elaborate on the side effects of
varying altitudes and attitudes as appeared in UAV-based
person re-ID:

• Varying altitudes caused scale variations Varying alti-
tude of the UAV, i.e., 20 to 60ms within the PRAI-1581
dataset, results in unstable scales of the pedestrians com-
pared with the fixed camera captured images, thereby
causing a poor performance in using the traditional per-
son re-ID methods [4, 15]. Specifically, as visualized in
Fig. 1a, the target pedestrian is ill-recognized due to the
scale similarity, while being ignored for the scale varia-
tions. To remedy this issue, in this research, we enable
the designed model with scale awareness by learning the
attention-enforced image patches, thus further enhanc-
ing the extracted feature representation regardless of the
altitude variations of the UAV.

• Attitude variation-induced diversified random occlu-
sions Although previous research has developed well-
designed deep models to address the side effects of
occlusions in ground-based person re-ID tasks, this issue
would be more intractable in aerial data due to the diver-
sified occlusions caused by different flight attitudes of
UAVs. To be specific, in Fig. 1b, the negative samples

are closely aligned due to the similarity of the generated
occlusions, while the positive samples are being pushed
away caused by the diversified randomocclusions. To this
end, this research sought to address the negative effects
of conspicuous occlusions in training the discriminative
feature representation for reliable re-identification.

To remedy the issues about scale variations and diversified
random occlusions caused by altitude and attitude variations
in the UAV-based person re-ID, in this research, we propose
a novel Multi-Granularity Attention in Attention (MGAiA)
method. Specifically, we design a multi-granularity attention
(MGA) mechanism to enhance the feature representations
by allocating attention weights to different patches within
each granularity image, thus enabling the model with a
global awareness to emphasize the significance of differ-
ent discriminative features from multi-granularity images
and being robust, w.r.t, scale variations. For better clarity,
Fig. 2 illustrates the discriminative feature representation
captured by different patch sizes, in which the different
granularity-enforced featuremaps activate diversified feature
representations. Furthermore, we propose an attention-in-
attention (AiA) mechanism to further learn the attention
weights of all the enhanced granularity-induced images,
thereby effectively reducing the negative effects caused by
the unavoidable occlusions.

To sum up, our main contributions are summarized as
follows:

Fig. 1 Visualization of the negative effects caused by the altitude vari-
ations and attitude variations of UAVs. Images with green borders
(positive) share the same identity with the given query while those with
red borders (negative) do not. In (a), the negative sample tends to be
closer to the query than the positive samples due to the scale similarity

which depends on altitude variations. Similarly in (b), the negative sam-
ple is closely aligned due to the similarity of the generated occlusions,
while the positive samples are pushed away because of the diversified
random occlusions
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• To get robustness to scale variations for the model, a
multi-granularity attention (MGA)module is designed to
collect different discriminative features at multiple gran-
ularities, thereby enabling the trained model with global
awareness to understand the scale variations efficiently.

• To alleviate the side effect of the diversified random
occlusions caused by attitude variations, we specifi-
cally introduce a novel attention in attention (AiA)
mechanism to measure the significance of different gran-
ularities, thus better exploring the discriminative person
re-identification model while being robust, w.r.t, occlu-
sion variations.

• We conduct comprehensive experiments on two aerial-
based datasets with our proposed MGAiA method and
the representative state-of-the-art re-ID methods. Inter-
estingly, in exploring the gap between the ground-based
dataset and the aerial-based dataset, we also applied our
MGAiA method to approach the cross-domain knowl-
edge transfer. The overall experimental results demon-
strate that our method can achieve competitive results in
solving person re-identification tasks on aerial data via
comparing with a series of popular re-ID methods.

2 Related works

2.1 Drone-based person re-ID

Drones equipped with cameras have become highly in
demand in various real-world applications, such as surveil-
lance, aerial photography, and agriculture. Thanks to the fast
Internet connection and mobility of UAVs, they can be con-

Fig. 2 Illustration of three identities with their discriminative factors
at different granularities from coarse to fine. For example, body shape
can be captured as the discriminative factor from coarse granularity,
while hair style can be captured at fine granularity. Feature maps of
multi-granularity images are obtained through spatial average pooling
with different ratio factors

trolled remotely to perform vision tasks including person
re-identification through combining suitable algorithms.

For the conventional ground-basedperson re-identification
tasks, prior works have achieved remarkable progress in
addressing multiple issues with effective algorithms. In
order to address the appearance ambiguity challenges aris-
ing from different camera views, Wang et al. [16] propose a
method that combines visual semantic information with eas-
ily collectible spatial-temporal information to enhance the
performance of person re-identification tasks. Zhuo et al.
[17] introduce a new occluded person re-ID problem and
design an occlusion simulator to automatically generate arti-
ficial occlusions for learning robust feature representations
with multi-task losses. In [18], a differentiable graphical
model is proposed to tackle the weakly supervised re-ID
problem which aims to train deep models with inaccurate
bag-level annotations instead of accurate image-level anno-
tations. This approach greatly reduces the annotation effort
required, especially in scenarios with a large number of
images and crowded scenes. Despite the exhaustive research
on conventional person re-identification tasks, there are lim-
ited works that specifically address the drone-based person
re-ID tasks due to the lack of large-scale datasets.

As the pioneering research, in 2014, Layne et al. [19] pro-
vide the first public dataset of 9 flights and 28 individuals for
re-identification and elucidate the unique challenges of per-
son re-identification on themobile platform. To address these
new challenges, Schumann et al. [20] first evaluate the effec-
tiveness of deep learning methods and extract deep features
of unlabeled aerial data by applying the models pre-trained
on other ground-based public datasets. Motivated by this,
they further [21] combine the conventional hand-craft fea-
tures and deep learning features to strengthen the robustness
of the final representations. This combination proves to be
effective for an unexplored task of re-identifying pedestri-
ans between static ground-based cameras and mobile aerial
cameras. With the widespread application of UAVs, increas-
ing efforts have been devoted to collect drone-based datasets
for person re-identification tasks. Mueller et al. [22] pro-
pose a small-scale aerial benchmark dataset UAV123 which
contains 123 video sequences captured at altitudes varying
between 5 and 25ms. Subsequently, Ggrigorev et al. [23]
present a new,medium-sized datasetDRoneHIT (DRHIT01)
of 101 unique individuals and further propose a combi-
nation of triplet loss and Large-margin Gaussian mixture
(L-GM) loss [24] to tackle the drone-based re-ID problem.
In 2020, the first large-scale dataset PRAI-1581 [10] was
published with baseline results based on a deep learning
method that utilizes subspace pooling of convolution fea-
ture maps. This dataset consists of 1581 person identities
with 39,461 images captured by two DJI consumers UAVs.
Similarly, the P-DESTRE dataset [11] is a newly released
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video/UAV-based dataset that is suitable for pedestrian long-
term re-identification research.

Due to the relatively late collection of UAV-based dataset,
the research on UAV-based person re-identification tasks is
still insufficient to break through the intractable challenges
caused by variations of flight altitude and attitude within
drones. Through deep insight into the contradiction between
better leveraging the informative area of small scale while
suppressing its occlusions, we thus design a novel MGAiA
network to separate the discriminative features from differ-
ent granularities and allocate different weights to them in
reducing the contradiction within the attention allocation.

2.2 Attention for person re-ID

The attention mechanism refers to pooling a sequence or a
set of features with different weights in order to compute a
proper representation of the whole sequence or set [25–27],
thereby making it possible to deal differently with different
data features while aggregating. In person re-identification,
previous researchers have proposed different approaches to
address themisalignment problemby leveraging the attention
mechanism to guide the network to concentrate on the signifi-
cant parts of the image, thus achieving remarkable progress in
boosting the accuracy of re-identifying. Zhou et al. [28] build
an end-to-end comparative network to automatically pick out
the most discriminative spatial-temporal information by a
temporal attentionmodel for representingvideos and a spatial
recurrent model for pair-wise metric learning. Chen et al. [2]
propose a joint spatial-temporal attention model (STAL) to
select the salient parts of persons in the video by learning the
quality scores of multiple spatial-temporal units. However,
these methods suffer from unreliable parts location which
generally depends on off-the-shelf pose estimation models.
Inspired by the concept of self-attention [25, 29], another
research line calculates the interaction between pixel pairs
to obtain the global pixel-level attention for promoting the
development of attention mechanism. Chen et al. [30] seg-
ment image sequences of pedestrians into multiple snippets
and then, calculate the self-attention within each snippet for
improving the robustness of feature embeddings. Liu et al.
[31] borrow themerits of the non-local attentionmodule [29]
to incorporate the video characteristics into feature repre-
sentations and demonstrate the effectiveness of non-local
attention in solving person re-ID tasks. In [32], Li et al.
categorize the attention mechanism into hard region-level
attention as well as the soft pixel-level attention and com-
bine them to form a unified attention block for the optimized
feature representations. However, this attention block intends
to extract the discriminative features of different levels of the
convolutional neural network rather than different granular-
ities. Chen et al. [33] argue that a more desirable feature
embedding for person re-ID should be both attentive and

diverse and thus, introduce a novel regularization to reduce
the overfitting of the local regions obtained by the atten-
tion mechanism. Differently, we consider both the detail and
global information by delicately aggregating discriminative
features of different granularities.

Inspired by the effectiveness of attention mechanisms
in solving ground-based person re-ID tasks, our research
further explores its priorities in aerial images via design-
ing a novel attention mechanism. Specifically, in allocating
attention weights for discriminative features from different
granularities, the final representations become robust, w.r.t,
the scale diversity, and occlusions.

2.3 Transfer learning in person re-ID

Transfer learning techniques aim to address the existing
domain shift [34, 35] across domains, thereby receiving great
research attention in solving the lack of sufficient annotated
training data experimental scenarios [36–40]. This tech-
nique has been widely used in many related applications,
e.g., the face sketch synthesis [41–43] which transforms
face photographs into sketches, and image super-resolution
which aims to enhance low-resolution images by generating
high-resolution counterparts, [44–46]. Therefore, increasing
efforts have been made on unsupervised domain adaptation
person re-ID approaches which boost the accuracy on a fully
unlabeled target re-ID dataset by transferring the knowl-
edge from the existing source labeled dataset. In traditional
ground-based person re-ID settings, the transfer learning
methods can be categorized into three branches to reduce
the distribution divergence between the source and the tar-
get datasets. 1). Learning domain-invariant feature-based
methods [36, 37, 47, 48] intend to narrow the feature distribu-
tion discrepancy on a newly optimized common feature space
using somemetric measurements, e.g.,MaximumMeanDis-
crepancy (MMD) [49] or Earth Mover’s Distance (EMD)
[50]. 2). Style transfer-based methods [51, 52] leverage
the generative adversarial networks (GAN) [53] to transfer
source labeled images to replace the style of target unla-
beled images, i.e., CycleGAN [38] proposes to combine the
adversarial loss and cycle consistency loss for training the
translation model without paired image examples. Liang et
al. [54] emphasize the importance of distinguishing different
camera-based sub-domains in cross-domain transfer learning
and propose a many-to-many generative adversarial network
that translates image styles from source sub-domains to target
sub-domains. 3). Pseudo-label-based methods [55, 56] are
the most widely used among the three branches of transfer
learning methods due to their simple yet effective rationale.
They typically utilize the discriminative effectiveness of the
source model to assign pseudo labels for unlabeled target
images and then, fine-tune the model on the target domain
by using the pseudo labels. To tackle the challenges caused
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by the domain shift, Fu et al. [55] propose a Self-similarity
Grouping (SSG) approach, which can mine the potential
similarity in the target dataset by building multiple clusters
according to different views from the global body to local
parts. In [57], Wang et al. address the issue of transfer amne-
sia, which occurs when simply using a pre-trained source
model for pseudo-label self-training on the target domain
leads to a decline in memory retention of the source knowl-
edge. They propose a p-Memory Reconsolidation approach
to prevent the loss of source knowledge, resulting in signifi-
cant improvements in cross-domain re-IDperformance.Yang
et al. [56] design an asymmetric co-teaching framework that
alternatively trains twomodels to ensure the training samples
are both clean andmiscellaneous for improving the clustering
accuracy.

Considering the remarkable progress achieved by trans-
fer learning methods in person re-identification tasks, we
exploit the potential ability to transfer the well-trainedmodel
using ground-based datasets to be applied to the UAV-based
datasets. In this research, the solid experiments demon-
strate that we can achieve comparative results on UAV-based
datasets by fine-tuning our carefully designed model, which
lays a foundation for future exploration of transfer learning
techniques in UAV-based re-ID tasks.

3 Methodology

To address the scale variations and diversified random occlu-
sions caused by altitude and attitude variations of UAVs
in drone-based person re-identification tasks, we propose a
novel Multi-Granularity Attention in Attention (MGAiA)
network which explores discriminative features from dif-
ferent granularities and delicately aggregates them through
automatically attention re-allocation according to their con-
tributions to re-identify pedestrians. For clarification, the
overall network architecture of the proposedmethod is shown
in Fig. 3. Specifically, we illustrate our pipelinewithMGAiA
in Fig. 3a, which corresponds to the overall framework in
Sect. 3.1. Then, we describe our proposed Multi-Granularity
Attention in Attention module in Fig. 3b, which consists
of two key parts: Multi-granularity attention (MGA) mod-
ule (Sect. 3.2) and Attention in Attention (AiA) module
(Sect. 3.3). Figure3c demonstrates the detailed attention cal-
culation process of MGA. Finally, the loss functions adopted
in our proposed method are described in Sect. 3.4.

3.1 Overall framework

As illustrated in Fig. 3, we utilize ResNet-50 [58] pre-trained
on ImageNet [59] as the backbone network to extract feature
representations of pedestrians. In order to equip the model
with a global view for strengthening the informative areas

Fig. 3 The overall architecture of our proposed MGAiA, which con-
sists of three parts: a The pipeline of the whole framework: We insert
four MGAiAmodules into the backbone network to strengthen middle
feature representations. b Details of the Multi-Granularity Attention

in Attention module including the Multi-Granularity Attention (MGA)
module and Attention in Attention (AiA) module. cDetails of the atten-
tion calculation ofMGAmodule.Weperform this process for all feature
maps at different granularities
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of different scales and suppressing occlusions, we design
a Multi-Granularity Attention in Attention (MGAiA) mod-
ule and insert four such modules after conv1_1, conv2_2,
conv3_3 and conv4_4, respectively. Middle representations
after each convolutional block are input into the MGAiA
module to be enhanced by exploring the relations not only
within but also across the feature maps at different granulari-
ties. Then, eachMGAiA block outputs the enhanced features
of the same size as the input features. The last fully connected
(FC) layers of the original ResNet-50 network are discarded,
and two additionalFC layers are added for identifying pedes-
trians. The first one has 2,048 dimensions, and the output of
the second FC layer is K dimensional where K is the num-
ber of identities in the dataset. Given a labeled image xi and
its ground truth label yi , we train the model with the cross-
entropy loss and the hard-batch triplet loss [60]. Specifically,
the cross-entropy loss is employed with the output of the
second FC layer by casting the training process as a classi-
fication problem and the hard-batch triplet loss is employed
with the output of the first FC layer by treating the training
process as a verification problem. More details of the loss
design can be found in Sect. 3.4.

3.2 Multi-granularity attentionmodule

The process of human perception can concentrate on dis-
criminative information at different granularities, e.g., body
shape is captured from a coarse granularity while cloth-
ing details are captured from a fine granularity. Inspired by
this, we intend to equip the deep learning models with this
capacity by introducing a multi-granularity attention module
(MGA). Our proposed attention mechanism adopts a hierar-
chical design to derive feature maps of different granularities
and calculates the relations between feature nodes from each
map for further feature aggregating.

For an image sequence of a given pedestrian, we sam-
ple T frames as S = {I1, I2, . . . , IT }. We denote X =
{Xt |t = 1, 2, . . . , T } as the feature representation of the
input image sequence, whereXt ∈ R

C×N includes N feature
nodes, e.g., N = H × W for images and N = H × W × T
for videos (H ,W ,C represent the height, width, and number
of channels, respectively). We split the feature representa-
tions into M groups along their channel dimensions, and
each group corresponds to a granularity. In our experiments,
we set M = 4. For the mth granularity, we perform spa-
tial average pooling with a ratio factor m on the mth split
features of Xt , t = 1, 2, . . . , T . Then, we obtain the factor-
ized feature map for the t-th frame from m-th granularity as

Xt,m ∈ R
Hm×Wm× C

M , where Hm = H
2m−1 and Wm = W

2m−1 .
Figure4 presents the split feature maps at multiple granulari-
ties obtained by average pooling. For the feature map of each
granularity, we propose to highlight the discriminative areas

Fig. 4 Feature maps at multiple granularities obtained by average pool-
ing. We split the feature representations into M groups and perform
average pooling with different ratio factors on each group

Fig. 5 Illustration of the non-local attention operation on the feature
map Xm . Here, we use the ratio factor m = 2 for illustration

while suppressing the redundant ones according to the affin-
ity calculation between feature nodes of all positions through
the non-local attention operation. Figure3c illustrates the cal-
culation process of the non-local attention operation, and
Fig. 5 provides an example to further detail howwe apply the
non-local attention operation on the featuremapXm from the
m-th granularity.

Given a featuremapXm ∈ R
Hm×Wm× C

M of them-th group,
we can treat it as Nm = Hm × Wm feature nodes with the
channel dimension of C

M and sample an input feature node

xi ∈ R
C
M fromXm and perform the non-local attention oper-

ation on xi to obtain the corresponding output zi through the
following calculation:

yi = Wz

N∑

j=1

f (xi , x j )

C(x)
(Wv · x j ), (1)

where C(x) = ∑
∀ j f (xi , x j ) is a normalization factor, i is

the index of a given query position and j enumerates all posi-
tions in the feature map. f (xi , x j ) denotes the relationship
between position i and j , andWz andWv are transformmatri-
ces which are implemented as, e.g., 1 × 1 × 1 convolutions.

Generally, the number of channels represented by Wv

is set to be half of the number of channels in xi , which
reduces approximately 50% computation efficiency via com-
paring with the non-local attention block enforced version.
Then, the weight matrix Wz projects the aggregated feature
to the original dimensional embedding space for matching
the number of channels with the given input feature xi .
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As for the pairwise function f , Wang et al. [29] proposed
four instantiations to meet various needs in practical appli-
cations, i.e.,Gaussian, EmbeddedGaussian, Dot product and
Concat. In this paper, we adopt the most widely used instan-
tiation Embedded Gaussian, a simple extension of Gaussian,
which computes similarity in an embedding space, defined
as f (xi , x j ) = eθ(xi )φ(x j ).

After performing the non-local attention operation on all
the feature nodes from Xm , we obtain Nm enhanced feature
nodes yi . We repeat the element of yi for 2

(m−1) × 2(m−1)

times to recover the size according to its original size before
average pooling as illustrated in Fig. 5. Finally, the MGA
module output M groups of updated features at different
granularities.

3.3 Attention in attentionmodule

As mentioned earlier, the influence of occlusions can be
aggravated in aerial images due to the various flight attitudes
of UAVs. Therefore, the quality of discriminative features
extracted by the MGA module can be corrupted by multi-
type occlusions such as shadows and umbrellas which are
misleading. Motivated by this, we propose an Attention in
Attention (AiA) module to automatically assign different
attention weights to feature maps from different granularities
for developing a more effective feature aggregation strategy.

The gray box in Fig. 3b denotes the pipeline of our pro-
posed AiA module. The output representations from M
groups of different granularities are concatenated to match
the original size of the middle representations extracted by
each residual block of the backbone ResNet-50, which can
be denoted asY = [Y1,Y2, . . . ,YM ], whereY ∈ R

C×H×W

and Ym ∈ R
C
M ×H×W ,m = 1, 2, . . . , M . Then, the concate-

nated features are sent into a convolutional neural network
consisting of convolution layers and fully connected layers.
The fully connected layer generates M scores corresponding
to the contributions of feature maps from different granular-
ities, and scores are scaled to [0, 1] by the sigmoid function
σ(·). Since the AiA module focuses more on the relations
between the whole feature map of each granularity, every
channel within the feature map from the same granularity
will be assigned to the same attention score. The final feature
representations of our proposed MGAiA can be formulated
as:

X∗ = X + [μ1Y1, μ2Y2, . . . , μMYM ], (2)

whereμm represent different granularities’ scores and all the
scores are normalized,

∑M
m=1 μm = 1.

3.4 Loss design

As mentioned before, we utilize two widely deployed loss
functions in the re-ID tasks to train our network jointly, the
cross-entropy loss [12] and the batch-hard triplet loss [61,
62].

Ltotal = Lxent + Ltri , (3)

For each mini-batch, the cross-entropy loss is computed
by using the output fi of the classifier via:

Lxent = − 1

B

B∑

i=1

log p(yi |fi ), (4)

where B is the training batch size, yi denote the ground truth
identity label of fi .

To construct the triplets for computing the loss, we select
the most dissimilar positive sample p and most similar nega-
tive sample n for each anchor sample a in the batch according
to their distances ranking results. The triplet loss is computed
by using the embedding features gi output by the first FC
layer as below:

Ltri =
B∑

i=1

[
m + ‖gpi − gai ‖2 − ‖gni − gai ‖2

]
+ (5)

where ‖ · ‖ denotes the Euclidean distance and m = 0.3 is
the margin hyper-parameter.

4 Experimental results

4.1 Datasets and evaluationmetrics

In this section, we conduct experiments to demonstrate
the effectiveness of our proposed method on two large-
scale UAV-based person re-ID datasets PRAI-1581 [10]
and P-DESTRE [11]. Furthermore, we utilize three popu-
lar ground-based re-ID datasets including CUHK03 [63],
Market-1501 [64] and CUHK-SYSU [65] to evaluate the
performance of transfer learning methods which pre-train
the model on the source ground-based dataset and further
fine-tune on the target UAV-based dataset. The evaluation
statistics are summarized in Table 1 with some samples illus-
trated in Fig. 6, and we detail their characteristics in the
following.

PRAI-1581 [10] dataset consists of 39,461 images of
1,581 individual identities captured by two consumer-grade
UAVs at a high resolution of 4K × 2K at heights between 20
and 60ms in an outdoor environment. We divide the dataset
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Table 1 The evaluation
statistics of five datasets
PRAI-1581, P-DESTRE,
CUHK03, Market-1501 and
CUHK-SYSU

Dataset Camera Format Identities Bound. box Height (m)

PRAI-1581 [10] UAV Still 1,581 39k [20, 60]

P-DESTRE [11] UAV Video 269 >14.8M [5.5, 6.7]

CUHK03 [63] CCTV Still 1,467 13K –

Market-1501 [64] CCTV Still 1,501 32,668 –

CUHK-SYSU [65] CCTV Still 8,432 96,143 –

Fig. 6 Some samples in the two aerial-based datasets PRAI-1581 and
P-DESTRE and three ground-based datasets CUHK03, Market-1501
and CUHK-SYSU

into two parts for training and testing, respectively, according
to the experimental setting reported in the previous research
[66, 67] for a fair comparison. The training set includes
19,523 images of 782 identities. We use the rest part includ-
ing 799 identities with total of 19,938 images as the test set

and 4,680 images selected from the same 799 pedestrians in
the test set as the query.

P-DESTRE [11] dataset provides full videos and per-
son tracks for both pedestrian short-term and long-term
re-identification. It includes over 14 million bounding boxes
with 269 pedestrians captured by a set of DJI Phantom 4
drones controlled by human operators. These drones flew
over various scenes at altitudes of 5.5 to 6.7ms across mul-
tiple days. This dataset contains five predefined splits, each
one containing the training, gallery and query sets in the pro-
portion of 50:40:10 and we report the average of the results
across all five splits. In our experiments, we evaluate the per-
formance of pedestrian short-term re-identification on this
dataset and directly follow the split setting in.1

CUHK03 [63] dataset includes 14,097 images of 1,467
pedestrians capturedby5pairs of cameras at theChineseUni-
versity of Hong Kong. Each identity is observed by two non-
overlapping cameras and has an average of 4.8 images in each
camera view. Apart from manually labeled bounding boxes
(CUHK03_labeled), theCUHK03 dataset also provides sam-
ples detected with a state-of-the-art pedestrian detector
[68] (CUHK03_detected). CUHK03_labeled is divided into
7,368 images for training, 5,328 images for testing, and 1,400
images for querying. Similarly, CUHK03_detected includes
7,365 images for training, 5,332 images for testing, and 1,400
images for querying.

Market-1501 [64] dataset consists of 32,668 annotated
bounding boxes of 1,501 pedestrians captured by six dif-
ferent cameras on the campus of Tsinghua University. All
these pedestrian images are automatically detected by the
deformable part model (DPM) detector. The training set con-
tains 751 identities with total of 12,936 images, while the test
set contains 750 identities with 19,732 images as the gallery
and 3,368 images selected from the gallery as the query.

CUHK-SYSU [65] consists of 18,184 images of 8,432
different identities and 96,143 annotated bounding boxes,
which are collected from street snaps and movies. We split
the dataset into a training set and a test set, ensuring no over-
lap on images and labeled identities between them. In our
experiments, we use the official training/test split provided
by the dataset. The training set contains 5,532 identities with

1 http://p-destre.di.ubi.pt/pedestrian_reid_splits.zip.
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11,206 images, and the test set contains 6,978 images as gal-
leries and 2,900 identities as queries.
Evaluation protocol. For the evaluation of the experiments,
we use the standard metrics in the field of person re-ID,
Cumulative Match Characteristic (CMC), and mean average
precision (mAP) tomeasure the performance of our proposed
method. Cumulative Match Characteristic (CMC) curves
are the most common evaluation metrics which present the
probability that a query identity appears in different-sized
candidate lists. Given a query image, an algorithm should
rank all the gallery samples according to their feature similar-
ities to the query from large to small. In thiswork,wemeasure
the performance in terms of rank-1 with CMC, where rank-n
indicates the average matching correct rate among the top-n
images with the highest confidence.Mean average precision
(mAP) is the average of the precision values across all query
images, which reflects all true matches to the user when mul-
tiple ground truths exist in the gallery.

4.2 Implement details

In our experiments, we initialized ResNet-50 as our back-
bone network with the parameters pre-trained on ImageNet
and modified conv5_1 to stride 1 instead of stride 2 to bet-
ter adapt the re-ID task. All images are uniformly resized to
256 × 128 before they are fed into the network. The batch
size is set to 4 × 8 = 32, sampling with 4 different iden-
tities and 8 instances per identity in each mini-batch. For
our multi-granularity attention in the attention module, we
insert 4 layers after conv1_1, conv2_2, conv3_3 and conv4_4,
respectively. We train our MGAiA-based feature extraction
network for 200 epochs with both the cross-entropy loss and
the batch-hard triplet loss and choose Adam optimizer with
an initial learning rate of 10−4 and decay it by 10 every 50
epochs. The method is implemented based on the Pytorch
platform and tested on a single NVIDIA 3080 GPU card.

4.3 Comparison with state-of-the-art methods

In this section, we compare our method with multiple state-
of-the-artmethods on the two large-scaleUAV-based datasets
including PRAI-1581 and P-DESTRE datasets. Tables 2 and
3 report the mAP and the rank-1 accuracy on these two
datasets, respectively.

4.3.1 Results on PRAI-1581 dataset

For this dataset, we compare our proposed MGAiA with
ten representative person re-ID methods, including MBC
[69],DCGAN [70],Part-align [71], SVDNet [72], 2stream
[12], PCB [4], AlignedReID [73], DSR [74], MGN [74],
OSNet [75]. Table 2 summarizes the detailed quantitative
comparison results. From the table, we can see that our

Table 2 Results of the state-of-the-art methods on PRAI-1581 dataset

Methods mAP Rank-1

MBC [69] 22.83 30.05

DCGAN [70] 28.82 38.93

Part-align [71] 32.86 43.14

SVDNet [72] 36.70 46.10

2stream [12] 37.02 47.79

PCB [4] 38.45 48.07

AlignedReID [73] 37.64 48.54

MGN [74] 40.86 49.64

DSR [76] 39.14 51.09

OSNet [75] 42.10 54.40

MGAiA 42.72 55.40

We mark the second-best results by underline and the best results by
bold text

method achieves anmAP of 42.72% and a rank-1 accuracy of
55.40%, outperforming all the compared works and surpass-
ing some of the typical methods by a largemargin, e.g.,MBC
andDCGAN. Othermethods includingPart-align,PCB and
AlignedReID exploit effective part-aligned feature represen-
tations to alleviate the body part misalignment problem in
person re-ID tasks, which thus achieve better performance
on re-identifying pedestrians. For instance, AlignedReID
achieves a mAp of 37.64% and a rank-1 accuracy of 48.54%
on the PRAI-1581 dataset, exceedingDCGAN by 8.82%and
9.61%, respectively.However, thesemethods still suffer from
bad part alignment results due to the diverse views in aerial
imageswhere the upright assumption of person images in tra-
ditional ground-based re-ID cannot hold. Instead of explicit
alignment, DSR addresses the partial person re-ID problem
by leveraging a Fully Convolutional Network to generate
fix-sized spatial feature maps for ensuring consistent pixel-
level features and achieves an mAP of 39.14% and a rank-1
accuracy of 51.09% on the PRAI-1581 dataset. When com-
pared to MGN and OSNet which also consider multi-scale
or multi-granularity global and part features, our proposed
MGAiA outperforms them by 5.76% and 1.00% on the rank-
1 accuracy, respectively. Those experimental results clearly
demonstrate that our proposed method is superior and effec-
tive on the PRAI-1581 dataset.

4.3.2 Results on P-DESTRE dataset

On the P-DESTRE dataset, nine state-of-the-art representa-
tive methods are selected for comparison, including Chung
et.al [77], Rao et.al [78], STAM [79], GLTR [80], TKP
[81], STMPM [82], COSA [83], NVAN [31] and STCAN
[84]. The detailed comparison results are reported in Table 3.
Our approach also achieves the best performance of 83.01%
on mAP and 84.42% on the rank-1 accuracy on this large-
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Table 3 Results of the state-of-the-art methods on P-DESTRE dataset

Methods mAP Rank-1

Chung et.al [77] 67.80 68.00

Rao et.al [78] 72.20 71.00

STAM [79] 67.00 75.50

GLTR [80] 77.68 75.96

TKP [81] 74.90 77.40

STMPM [82] 73.40 77.90

COSA [83] 80.64 79.14

NVAN [31] 82.78 80.42

STCAN [84] 76.80 83.10

MGAiA 83.01 84.42

We mark the second-best results by underline and the best results by
bold text

scale video/UAV-based dataset via fully exploiting themerits
of the attention mechanism. Among these works,GLTR and
TKP improve the re-ID performance by utilizing the tempo-
ral knowledge existing in the video sequences of pedestrians.
For example, GLTR jointly explores the short-term tempo-
ral cues and long-term relations to alleviate the influence of
occlusions andnoises,which achieves anmAPof 77.69%and
a rank-1 accuracy of 75.96%. TheNon-local VideoAttention
Network (NVAN) exploits both spatial and temporal relations
within pedestrian videos by introducing a non-local atten-
tion operation at multiple feature levels, thus exceeding the
TKP by 7.88% on mAP and 3.02% on the rank-1 accuracy.
STCAN achieves the second-best result on rank-1 accuracy
by introducing a feature aggregation framework that simulta-
neously captures the temporal and channel relations of video
sequences. However, the result on mAP of this method is
slightly inferior to NVAN due to the diverse view angles in
aerial images, which demonstrates a relatively weaker abil-
ity to retrieve all the targets in the gallery set. Our MGAiA
borrows the effectiveness of the non-local attention opera-
tion but goes one step further in designing multi-granularity
attention in attention mechanism for improving the model
robustness to scale diversity caused by different view angles.
Therefore, our method improves the mAP by 6.21% com-
pared to STCAN.

4.3.3 Comparison with multi-granularity attention-based
methods

Due to the relatively recent availability of UAV-based
datasets, there is a limited amount of research specifically
dedicated to aerial-based re-ID. In order to demonstrate the
effectiveness of our proposed MGAiA method, we con-
duct additional experiments to explore two multi-granularity
attention-based methods, namelyHACNN [32] andMGCA
[85]. Considering the lack of direct experimental results for

Table 4 Comparison with multi-granularity attention-based methods
and extensions of the multi-granularity (MG) design to other attention
methods

Methods PRAI-1581 P-DESTRE

mAP rank-1 mAP rank-1

Baseline 36.49 47.47 66.10 79.10

+SE [26] 39.35 52.96 77.15 80.86

+SE (MG) 42.07 54.69 82.10 81.01

+CBAM [86] 39.35 52.98 77.53 80.94

+CBAM (MG) 41.38 55.01 82.12 82.09

HACNN [32] 37.65 47.97 74.21 79.95

MGCA [85] 41.34 54.67 81.78 81.64

MGAiA 42.72 55.40 83.01 84.42

The number of the granularity is set toM = 4

comparisons, we re-implement these methods on our aerial-
based datasets. The detailed comparison results are presented
in Table 4. On the PRAI-1581 dataset, our method achieves
improvements of 5.07% and 1.38% in mAP compared to
HACNN and MGCA, respectively. On the P-DESTRE
dataset, our method also achieves the best performance in
terms of mAP and rank-1 accuracy, surpassing HACNN
and MGCA by 8.8%, 1.23% in mAP and 4.47%, 2.78% in
rank-1 accuracy. Moreover, we extend the multi-granularity
design to other attention mechanisms to demonstrate the
superiority of our proposedmulti-granularity attentionmech-
anism in addressing aerial images. The results, shown in
Table 4, indicate that the multi-granularity design leads to
improvements of 2.72%, 2.03% in mAP and 1.73%, 2.03%
in rank-1 accuracy for SE [26] andCBAM [86] on the PRAI-
1581 dataset. While the multi-granularity setting works well
with other attention mechanisms, our proposed MGAiA
still outperforms SE (MG) and CBAM (MG) by 0.91%,
0.89% in mAP and 3.41%, 2.33% in rank-1 accuracy on the
P-DESTRE dataset, showcasing the effectiveness of our pro-
posed method.

4.4 Effectiveness of components

To verify the effectiveness of our MGAiA, we carry out
several experiments on the two UAV-based datasets to ana-
lyze the capability of each component separately, which
are the baseline ResNet-50 model, baseline with the Multi-
Granularity Attention module (Baseline + MGA), baseline
with the Attention in Attention module (Baseline + AiA) and
the proposed MGAiA network.

As shown in Table 5, by integrating the Multi-granularity
Attention (MGA) module to solve the drone-based person
re-ID task, the performance can be consistently improved by
a largemargin. ThemAP is increased by 4.38% on the PRAI-
1581 dataset and 15.87%on the P-DESTREdataset while the
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Table 5 Comparison with the
baseline method and different
granularity settings on the
PRAI-1581 and P-DESTRE
datasets

Methods FLOPs(G) Time (ms) PRAI-1581 P-DESTRE

mAP Rank-1 mAP Rank-1

Baseline 4.07 5.11 36.49 47.47 66.10 79.10

Baseline+MGA (M = 1) 5.14 10.13 39.64 53.13 80.72 81.65

Baseline+MGA (M = 2) 4.40 8.96 40.26 53.67 81.27 82.16

Baseline+MGA (M = 4) 4.16 6.65 40.87 54.13 81.97 82.86

MGAiA 4.16 6.67 42.72 55.40 83.01 84.42

M denotes the number of granularities. The mAP and rank-1 accuracy are presented. The best accuracies are
in bold type. We report the FLOPs and training time when processing a single image. (FLOPs: Floating-point
operations per second)

rank-1 accuracy is improved by 6.66% and 3.76% on the two
datasets, respectively, which implies that our proposedMGA
module is effective for identifying pedestrians by capturing
the discriminative information from different granularities.

The Attention in Attention (AiA) module aims to build
connections between discriminative features from all gran-
ularities. We further introduce the AiA module into the
combination of the baseline network and MGA module. It
can be observed that the mAP is improved by 1.85%, while
the rank-1 accuracy is improved by 1.27% on the PRAI-1581
dataset. As for the P-DESTRE dataset, the mAP and rank-1
accuracy are increased by 1.04% and 1.56%, respectively.
These results demonstrate the effectiveness of the AiAmod-
ule.

Granularity setting. In Table 5, we analyze the effects of
different numbers of granularities and compare ourMGAiA
method using different granularity settings (M = 1, 2, 4). It
is worth noting that the spatial resolution of the frame fea-
tures generated by the conv4_4 layer is 16 × 8. Based on
the setting of spatial average pooling with different ratios on
multiple granularities, the maximum number of granularity
levels (M) should be 4. Consequently, the spatial resolutions
of the different granularities, after applying average pooling,
are 16 × 8, 8 × 4, 4 × 2, 2 × 1, respectively. The results in
Table 5 reveal that the single granularity attention module
(M = 1) effectively utilizes the relations between feature
nodes, leading to performance improvements of 3.15% and
14.62% in mAP on the PRAI-1581 and P-DESTRE datasets,
respectively, compared to the baseline. However, the single
granularity approach overlooks the exploration of seman-
tics at different granularities. In contrast, our final scheme
MGAiA (M = 4) incorporates multiple granularities to
capture discriminative features and their interrelation. This
approach achieves significant rank-1 improvements of 7.93%
and 5.32% on the two datasets, respectively, compared to the
single granularity approach. Furthermore, Table 1 demon-
strates that finer granularity results in better performance.

Experimental efficiency. InTable 5,wepresent a compar-
ison of the computational complexity (Floating-point opera-
tions per second, FLOPs) and training time of our proposed

MGAiA method with the baseline and different granular-
ity settings. From the table, it can be observed that our
methodonly introduces aminimal increase inFLOPs (0.09G)
and training time (1.56ms) compared to the baseline when
processing a single image. Thanks to the multi-granularity
design, setting the number of granularities M = 4) signif-
icantly improves experimental efficiency compared to the
single granularity setting (M = 1). As demonstrated in Table
5, ourmethod exhibits limited computational burden in terms
of FLOPs compared to the baseline setting while delivering
notable improvements in re-identification performance on
the two datasets. Therefore, by exploring discriminative fea-
tures across different granularities with our well-designed
attention mechanism, our proposed MGAiA achieves com-
parable performance along with efficient training.

4.5 Visualization analysis

To gain further insights into the discriminative ability of our
proposed MGAiA, we provide visualizations of the learned
attention values at different granularities in Fig. 7.We employ
Grad-CAM[87] visualization to calculate attentionmasks for
four granularities, each with its corresponding attention map
at different spatial resolutions (16 × 8, 8 × 4, 4 × 2, 2 × 1).
We rescale the attention maps to the same spatial resolu-
tion for better visualization. Notably, our multi-granularity
attention mechanism effectively captures discriminative fac-
tors at various granularities, ranging from fine to coarse.
As depicted in the figure, finer granularities such as the
1st granularity tend to focus on capturing more intricate
details, while coarser granularities tend to emphasize larger
body parts. By allocating different attention weights to
patches within each granularity image, our multi-granularity
attention mechanism enhances feature representations and
endows the model with global awareness, highlighting the
significance of diverse discriminative features from multi-
granularity images.

Additionally, we compare our method with the baseline
and two effective attentionmechanisms,CBAM [86] and SE
[26], to illustrate the differences in discriminative features
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Fig. 7 Visualization of our
attention at different
granularities and comparison
with other attention
mechanisms. ‘1st’ to ‘4th’
denote the 1st to 4th
granularities

obtained. Without the assistance of an attention mecha-
nism, the baseline extracts sparse and scattered features
from pedestrian images, resulting in relatively unreliable
results. While CBAM-integrated and SE-integrated net-
works exhibit outstanding performance in ground-based
re-ID tasks, Fig. 7 demonstrates that they tend to focus on cap-
turing the most discriminative features of the entire image.
For example, when processing the input image in the first
row, they assign significant importance to the umbrella, and
when processing the image in the second row, they prioritize
the entire body of the pedestrian while neglecting details due
to their small scales. As a result, they struggle to overcome
the negative effects of diverse random occlusions and scale
variations in aerial images.

In contrast, our proposed method leverages different dis-
criminative features at multiple granularities through the
multi-granularity attention (MGA) module and aggregates
them based on their significance using the attention in atten-
tion (AiA) mechanism. This enables the trained model to
possess global awareness of scale variations and robustness
to occlusion variations, as depicted in Fig. 7.

4.6 Results on different design choices

In this section, we evaluate the suitability of different design
choices on our proposed MGAiA network for solving the
person re-identification tasks in aerial images. Specifically,
we focus on data augmentation methods, backbone mod-
els, and loss functions. We evaluate three commonly used
augmentation methods including the random crop (RC), the
random erasing (RE), the random rotation (RR), and their
combinations on the datasets. To demonstrate the compat-
ibility of our proposed MGAiA module, we also adopt
the OSNet as the backbone network for comparison. The
loss functions presented in the table consist of the cross-

entropy loss (IL), the batch hard triplet loss (TL), and
the Large-margin Gaussian mixture loss (L-GM) [24]. The
experimental results for the two evaluation datasets are pre-
sented in Tables 7 and 6.

PRAI-1581: The results of our proposed MGAiA net-
work with different design choices on the PRAI-1581 dataset
are shown in Table 7. From the table, we can see that the com-
bined loss functions lead to better performance than solely
using the cross-entropy loss when applying the ResNet-50 as
the backbone architecture. However, it is worth noting that
the combination of cross-entropy loss and the triplet loss
leads to a degradation in the rank-1 accuracy when apply-
ing the OSNet as the backbone architecture, which indicates
the benefits of a specific loss function are network depend.
The evaluation results show that all augmentation methods
used in our experiments can improve the performance of the
re-identification while the combination of RE and RC aug-
mentation yields the best performance on both the ResNet-50
and OSNet backbones when training with the triplet loss and
L-GM loss. These results indicate that we can hardly ver-
ify which variant of the random rotations, whether cropped
or non-cropped is better suited for solving the person re-ID
tasks in aerial images, as the best choice is dependent on the
backbone and loss functions used.

P-DESTRE: Table 6 presents the results of different
design choices for our proposed method on the P-DESTRE
dataset. We can observe from the table that for ResNet-
50 with cross-entropy loss, the RC augmentation results in
the best performance with 87.25% on mAP and 90.35% on
the rank-1 accuracy, respectively. In contrast to that, the
RC augmentation only leads to minor improvements for
training OSNet with identity loss, and the biggest improve-
ments are made by training with the combination of RC and
RE augmentation yielding 89.35% on mAP and 91.12% on
the rank-1 accuracy, respectively. Results for the ResNet-50
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Table 6 Evaluation of different
design choices on P-DESTRE

Backbone Augmentation IL IL+TL TL+L-GM

mAP Rank-1 mAP Rank-1 mAP Rank-1

ResNet-50 None 79.23 80.59 83.01 84.42 84.21 85.89

RC 87.25 90.35 89.12 90.05 89.12 90.56

RE 79.84 81.11 83.11 84.51 84.22 86.94

RR 84.92 88.89 86.12 87.50 86.96 87.76

RC,RE 85.90 89.94 87.17 88.39 87.94 88.27

RC,RR 86.98 90.10 88.04 89.20 88.48 89.79

RE,RR 83.98 85.21 85.02 86.83 87.01 87.13

RC,RE,RR 84.70 90.12 85.22 87.11 86.93 87.28

OSNet None 84.25 85.15 84.37 85.29 84.71 85.93

RC 86.70 87.69 85.80 88.80 87.29 88.45

RE 88.90 89.94 85.58 88.30 85.76 88.87

RR 88.03 88.70 88.78 92.08 89.44 92.85

RC,RE 89.35 91.12 87.56 89.93 88.25 90.25

RC,RR 87.98 88.73 88.59 91.01 89.14 90.66

RE,RR 88.69 89.23 88.89 91.84 89.59 91.74

RC,RE,RR 88.91 89.65 89.95 90.13 90.60 90.97

’IL’ denotes the identity cross-entropy loss, ’TL’ denotes the triplet loss, and ’L-GM’ denotes the large-margin
Gaussian mixture loss. ’RC’, ’RE’, and ’RR’ represent the random crop, the random erasing, and the random
rotation, respectively

Table 7 Evaluation of different
design choices on PRAI-1581

Backbone Augmentation IL IL+TL TL+L-GM

mAP rank-1 mAP rank-1 mAP rank-1

ResNet-50 None 39.24 51.33 42.72 55.40 44.03 56.89

RC 43.25 54.35 48.02 61.23 49.12 62.56

RE 42.38 54.69 45.87 58.24 47.18 59.92

RR 43.84 54.89 48.32 62.10 48.96 63.76

RC,RE 43.90 54.14 49.17 62.59 51.94 63.89

RC,RR 45.98 57.10 49.04 62.20 50.48 63.79

RE,RR 45.68 56.89 49.27 62.14 50.18 63.68

RC,RE,RR 46.02 57.23 49.10 62.53 51.89 63.85

OSNet None 44.53 58.45 44.67 57.29 46.82 58.98

RC 46.50 61.49 46.70 59.20 48.89 60.93

RE 48.54 62.39 48.78 61.30 50.76 62.87

RR 48.03 61.79 49.78 61.98 51.01 63.09

RC,RE 49.45 62.32 51.72 62.01 52.34 65.34

RC,RR 48.32 61.43 47.89 61.01 49.14 61.96

RE,RR 48.29 60.83 48.76 64.03 49.69 63.31

RC,RE,RR 49.33 62.07 48.98 62.01 49.29 63.30

’IL’ denotes the identity cross-entropy loss, ’TL’ denotes the triplet loss, and ’L-GM’ denotes the large-margin
Gaussian mixture loss. ’RC’, ’RE’ and ’RR’ represent the random crop, the random erasing, and the random
rotation, respectively
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Table 8 Results of transfer learning from different ground-based
datasets to the PRAI-1581 dataset

Dataset Baseline MGAiA

mAP Rank-1 mAP Rank-1

ImageNet 36.49 47.47 40.87 54.13

CUHK03 39.31 50.03 45.98 59.90

Market-1501 39.44 50.20 46.39 60.42

CUHK-SYSU 41.72 52.42 48.31 62.46

The best accuracies are in bold type

backbone with combined loss demonstrate that RC augmen-
tation also achieves the best performance with the rank-1
accuracy of 90.05% for ’IL+TL’ and 90.56% for ’TL+L-
GM’. This indicates that the RC augmentation is already so
beneficial to the ResNet-50 network that a combination with
any other tested augmentation method could interfere with
the positive effect of it. For OSNet with combined loss, the
best performanceswith 89.95%and90.6%mAPare achieved
by using the combination of RC, RE, and RR augmenta-
tion while the best rank-1 accuracies of 92.08% and 92.85%
are achieved by the RR augmentation. It can be concluded
that OSNet achieves better results than ResNet-50 in solv-
ing the aerial-based person re-ID tasks, which indicates that
a well-designed backbone network can further improve the
performance.

4.7 Transfer learning

Considering that sufficient annotated labels for aerial-based
images are usually labor-intensive to obtain, the applications
of existing deep learning approaches including our MGAiA
are restricted in real-word scenarios when confronting with
the newly generated unlabeled data of different distribution.
To remedy this issue, we in this paper exploit the potential
ability to transfer the well-trained model using ground-based
datasets to be applied to the aerial-based datasets, which
lays a foundation for future exploration of transfer learn-
ing techniques on unsupervised cross-domain aerial-based
reID tasks. To explore the gap between the ground-based
dataset and the aerial-based dataset and further demonstrate
the potential transferability of the proposed MGAiA, we
compare ourmethod and the baseline network (plainResNet-
50) on the setting of transfer learning. First, we train the
network with the cross-entropy loss and the triplet loss on
three ground-based datasets including CUHK03, Market-
1501 and CUHK-SYSU. Then, we use the weights from the
pre-trained networks to initialize the model and fine-tune on
the two aerial-based datasets. The results of the experiments
are presented in Tables 8 and 9, and all are based on the
ResNet-50 backbone network.

Table 9 Results of transfer learning from different ground-based
datasets to the P-DESTRE dataset

Dataset Baseline MGAiA

mAP Rank-1 mAP Rank-1

ImageNet 66.10 79.10 81.97 82.86

CUHK03 69.49 81.87 86.05 87.99

Market-1501 70.56 81.67 86.35 88.23

CUHK-SYSU 72.72 75.56 91.81 92.44

The best accuracies are in bold type

The results of the two tables demonstrate that through
fine-tuning from the available ground-based person re-ID
datasets, we can achieve better performances of mAP and
the rank-1 accuracy on both two aerial-based datasets than
directly utilizing the model pre-trained from the ImageNet.
The CUHK-SYSU dataset contains richer information of
pedestrian images in terms of the backgrounds, occlusions,
and light conditions, thus achieving the best performance.
Although the Market-1501 dataset consists of almost the
same amount of images as the CUHK-SYSU dataset, the
latter has 8,432 unique identities which is much larger than
the former dataset. Furthermore, from the results, we can see
that compared to the baseline network, ourMGAiA achieves
larger improvements in transfer learning from person re-ID
datasets instead of the general ImageNet dataset. For exam-
ple, when fine-tuning from the CUHK-SYSU dataset, the
baseline method achieves an improvement of 5.23% mAP
and 4.95% rank-1 accuracy on the PRAI-1581 dataset. Our
proposed method can achieve an improvement of 7.44%
mAP and 8.33%,which demonstrates the effectiveness of our
network. In addition, the results on the P-DESTRE dataset
present better improvements of 9.84%mAP and 9.58% rank-
1 accuracy when fine-tuning the proposed MGAiA network
from the CUHK-SYSU dataset. We can conclude from those
experimental results that pre-training on a large-scale while
more task-specific dataset has significant contributions to
improve the performance of the re-ID tasks in aerial images.

5 Conclusion

In this research, we propose a novel Multi-granularity Atten-
tion in Attention (MGAiA) network to alleviate the negative
effects caused by the altitude and attitude variations in aerial-
based person re-ID tasks. To extract discriminative features
robust to the scale diversity caused by altitude variations,
we first introduce a Multi-granularity Attention (MGA)
module to explore the relations of feature nodes from differ-
ent granularities. Additionally, we propose an Attention in
Attention (AiA) mechanism to delicately aggregate the dis-
criminative features from all granularities according to their
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contributions, and thereby effectively reducing the diversi-
fied random occlusions induced unreliable re-identification.
Extensive experimental results demonstrate the effectiveness
of our proposed method in solving drone-based person re-ID
tasks. Future work includes hybridizing the meta-learning
techniques into the paradigm of MGAiA to explore global
optimization among multiple domains for extracting more
robust features and improving the performance of intractable
aerial images.
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